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Subtleties in Data Analysis Related to the 
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We comment on the analysis of the critical behavior of a layered driven diffusive 
system recently done by Achahbar and Marro. We discuss why we believe their 
method of taking the thermodynamic limit and determining the order-parameter 
exponent fl leads to unreliable estimates. 
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In a recent article, Achahbar  and Marro  (AM)  Ill studied the phase trans- 
itions in a model  consisting of  two stacked layers of  a driven lattice gas on 
square lattices. Each layer is identical to the "s tandard"  driven diffusive 
system 121 (see ref. 3 for a recent review) with only inplane nearest neighbor  
interactions, but  the layers are coupled via particle hoppings between them. 
At half-filling, they found two kinds of  transitions: a cont inuous  one at a 
critical temperature  T,., and a discontinuous one at a lower temperature. 
This comment  concerns their analysis of  the former transition. First, we 
will point  out  that  their extrapolat ion for the order  parameter  (m) to the 
the rmodynamic  limit (L- - - ,m)  is not  justified, especially since this 
approach  contradicts  their own finding of  different critical exponents 
for correlations along the horizontal  and vertical directions, namely 
vt, = 0.7 ___ 0.2 and v,. = 0.4 + 0.2. Second, we believe that, in their determina- 
tion of  the order-parameter  exponent  fl, AM did not  address the issue of  
the critical region. Finally, their Fig. 17 misrepresents the data  of  ref. 4 and 
is quite misleading. 
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For an isotropic system of size L h x Lv near a critical point, scaling 
functions such as that of m generally depend on the aspect ratio Lh/L,,.  It 
is well known (see e.g., ref. 5) that the behavior for a finite ratio is quite dif- 
ferent from that for, say, Lh/L,, --* O. On the other hand, scaling functions 
for an anisotropic system depend on a further scaling variable, S -  
L~"/Vh/L,,, especially if the correlation lengths along different directions ~.h 
and ~v, diverge at different rates ~4J. Exact results on the Kasteleyn model 
show precisely this behaviorr Clearly, what the "thermodynamic limit" 
means will then depend on how it is taken with regard to S. Parallel to 
keeping the aspect ratio fixed for isotropic systems, the least complicated 
way to approach this limit is to keep S fixed. In particular, if square shapes 
of various sizes are used, then S ~ 0 and extra singularities can arise ~4~ and m 
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Fig. 1. Plot of m p vs. T/T,. for the 2D lsing model: (a) p = 16, assuming a wide critical 
region; (b) p = 8, assuming a narrow critical region suggested by the fluctuation in m. 
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is not likely to scale simply as 1/L (at fixed temperature),  as assumed by 
AM. Since the effect of S ~ 0 has not been taken into account, the meaning 
of their scaling plot is considerably clouded. 

To determine fl, AM identified 1/]3 as the value p which yields the best 
linear plot of m p versus T. We contend that this procedure is unreliable, 
despite its ubiquity, because the estimate depends crucially on the size of 
the critical region (CR) assumed. To demonstrate our point, we apply this 
method to the two-dimensional (2D) Ising model, for which m( T; L,, = 
Lh = oo) and fl = 1/8 are known exactly. Assuming a wide CR as in Fig. la  
(with the same 30% range as in AM's Fig. 6), one would arrive at f l ~  1/16, 
along with a low estimate of To. The correct values are recovered only if 
a smaller CR is used, as in Fig. lb. 
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Fig. 2. Susceptibility Z=-(L,.Lh/T)((m 2) --(m) 2) for (a) the 2D Ising model and (b) the 
one-layer driven diffusive system, showing the interval over which m should scale. 
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Although the width of the CR is generally unknown and it probably 
depends on the thermodynamic average in question, we may estimate it 
from the corresponding fluctuations. For example, simulation data show 
that the fluctuation of m in the Ising model becomes independent of L out- 
side the range 0.9 ~< T/T,. <<, 1.2 (see Fig. 2a). For a typical L, the fluctua- 
tions outside this region are at least ten times smaller than the peak value. 
Thus, one can safely conclude that the low-T data in Fig. la are outside 
the scaling regime, so that the estimates of both fl and T,. are unreliable. 
Turning to the fluctuations in the driven models, we find that they are very 
small at the lower end of the temperature scale in Fig. 6 of AM (cf. 
Fig. 2b). Therefore, we believe that their fl is at best an effective exponent 
characterizing the low-T behavior. 

In their analysis of the one-layer system (in Section 3), they claimed 
to find "clear evidence depicted in Fig. 17" of the departure from scaling for 
the field-theoretic predictions. Close examination, however, reveals an 
alarming approach to arrive at this conclusion, namely, exploiting data 
from extremely low T. In particular, for systems of 26 x 44 and 20 x 20, 
temperatures as low as 0.6 and 0.1, respectively, were used! At those 
temperatures, m saturates to unity, correlation lengths are of O(1 ), so that 
fluctuations are negligible and become independent of system sizes. Thus, 
deviations from scaling for such data are totally expected. Presenting such 
data along side those for temperatures closer to T,. hardly tarnishes the 
good scaling behavior of the latter. Fig. 3 should make our point clear: 
applying AM's procedure and reasoning to the 2D Ising model, one would 
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Fig. 3. Finite-size scaling plot mL/~" vs. L~'"( T, .-  T)/T,. for 2D lsing model: tile exact values 
f l=  1/8, v=  I, and T,. are used. The lowest TIT,. values are, analogous to AM's Fig. 17: 
0.1 (L=20) ,  0.3 ( L =  30), 0 .4 (L=40) ,  0.6 (L=60) ,  0.7 ( L =  80), and 0.8 (L = 120). 
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have to exclude fl = 1/8! On the other hand, following our principle for the 
driven case, we see that the fluctuations of m become largely independent 
of L outside 1.2 ~< T~< 1.8 (see Fig. 2b), and, using data within this interval, 
we indeed observe scaling behavior with the parameters of ref. 4. 

In response to their assertion that "the size more than the shape of the 
system matters" in Section 4, we call the reader's attention to the recent 
work by Wang ~v~, who carried out extensive simulations and investigated 
systematically the effect of S. Based on much larger lattice sizes and much 
longer runs than any previous study, his results support the conclusion of 
ref. 4. 

Finally, AM's argument in favor of a "universality class" for several 
nonequilibrium systems in ref. 1 and elsewhere ~8~ is not well founded, even 
if their conclusion may turn out to be correct. Measuring two exponents 
(fl, v), using the same unreliable methods, hardly justifies the assignment of 
different systems in one class. 
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